Two Lysin-Motif Receptor Kinases, Gh-LYK1 and Gh-LYK2, Contribute to Resistance against Verticillium wilt in Upland Cotton
نویسندگان
چکیده
Lysin-motif (LysM) receptor kinases (LYKs) play essential roles in recognition of chitin and activation of defense responses against pathogenic fungi in the model plants Arabidopsis and rice. The function of LYKs in non-model plants, however, remains elusive. In the present work, we found that the transcription of two LYK-encoding genes from cotton, Gh-LYK1 and Gh-LYK2, was induced after Verticillium dahliae infection. Virus-induced gene silencing (VIGS) of Gh-LYK1 and Gh-LYK2 in cotton plants compromises resistance to V. dahliae. As putative pattern recognition receptors (PRRs), both Gh-LYK1 and Gh-LYK2 are membrane-localized, and all three LysM domains of Gh-LYK1 and Gh-LYK2 are required for their chitin-binding ability. However, since Gh-LYK2, but not Gh-LYK1, is a pseudo-kinase and, on the other hand, the ectodomain (ED) of Gh-LYK2 can induce reactive oxygen species (ROS) burst in planta, Gh-LYK2 and Gh-LYK1 may contribute differently to cotton defense. Taken together, our results establish that both Gh-LYK1 and Gh-LYK12 are required for defense against V. dahliae in cotton, possibly through different mechanisms.
منابع مشابه
Identification of novel microRNAs in the Verticillium wilt-resistant upland cotton variety KV-1 by high-throughput sequencing
Plant microRNAs (miRNAs) play essential roles in the post-transcriptional regulation of gene expression during development, flowering, plant growth, metabolism, and stress responses. Verticillium wilt is one of the vascular disease in plants, which is caused by the Verticillium dahlia and leads to yellowing, wilting, lodging, damage to the vascular tissue, and death in cotton plants. Upland cot...
متن کاملIsland Cotton Gbve1 Gene Encoding A Receptor-Like Protein Confers Resistance to Both Defoliating and Non-Defoliating Isolates of Verticillium dahliae
Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbv...
متن کاملQuantitative Trait Locus Mapping for Verticillium wilt Resistance in an Upland Cotton Recombinant Inbred Line Using SNP-Based High Density Genetic Map
Verticillium wilt (VW) caused by Verticillium dahlia Kleb is one of the most destructive diseases of cotton. Numerous efforts have been made to improve the resistance of upland cotton against VW, with little progress achieved due to the paucity of upland cotton breeding germplasms with high level of resistance to VW. Gossypium barbadense was regarded as more resistant compared to upland cotton;...
متن کاملGbvdr6, a Gene Encoding a Receptor-Like Protein of Cotton (Gossypium barbadense), Confers Resistance to Verticillium Wilt in Arabidopsis and Upland Cotton
Verticillium wilt is a soil-borne disease that can cause devastating losses in cotton production. Because there is no effective chemical means to combat the disease, the only effective way to control Verticillium wilt is through genetic improvement. Therefore, the identification of additional disease-resistance genes will benefit efforts toward the genetic improvement of cotton resistance to Ve...
متن کاملLYK4, a Lysin Motif Receptor-Like Kinase, Is Important for Chitin Signaling and Plant Innate Immunity in Arabidopsis1[C][W][OA]
Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin e...
متن کامل